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ABSTRACT 

The high-energy unitarity of a closed-string four-scalar tree amplitude is in- 

vestigated using partial-waveanalysis. A general argument is presented that such 

an amplitude in any known string theory will violate unitarity at sufficiently large 

s when perturbing around flat space-time of dimension six or more. The claim 

is checked explicitly on the four-dilaton tree amplitude of the superstring SST II 

in ten dimensions. The troublesome domain of interactions is the Regge region, 

effectively with one-graviton exchange in the t channel. It appears to be chal- 

lenging to demonstrate explicitly the unitarity of string theories at high energitx 
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1. Introduction 

Although the low-energy behavior of a string theory’ presumably is entwined 

in compactification, the limiting high-energy behavior could simply be that of the 

perturbation expansion developed about the Aat space-time of critical dimension. 

As a preliminary check of t,his possibility, one can examine the consistency of the 

perturbation expansion of a string theory about flat space-time at high energies. 

Partial-wave unitarity, when applicable, is a powerful constraint that a pertur- 

bation expansion should satisfy at each order if it is to be well-defined. The 

constraint is particularly stringent at high energies. For example, a well-known 

demonstration2 that the Higgs and longitudinally-polarized weak gauge boson 

sector of the standard model is strongly coupled if the Higgs mass is above about 

1 TeV follows from the violation of the J=O partial-wave unitarity condition 

by the relevant tree amplitudes at large s. It will be argued that partial-wave 

unitarity is a useful tool in studying string perturbation theory. 

In this letter, the partial-wave unitarity conditions are formulatedin higher 

dimensions. Infrared divergences in less than five space-time dimensions invali- 

date the partial-waveexpansion in theories of gravitation. Partial-waveunitarity 

should hold in flat space-time of dimension six or greater; it is not yet determined 

if it should hold in five dimensions also. 

Because the graviton is spin-2 and massless, single graviton exchange in the t 

channel typically leads to the growth of a tree-level two-to-two elastic amplitude 

as s2/t when s + 00 and t is fixed near 0. Because of the absence of infrared 

divergences there is no difficulty in demonstrating that such growth necessarily 

leads to unitarity violation at large s in six or more dimensions. Indeed, it 

has long been known that the exchange of a particle with spin greater than 1 
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can lead to troubles with unitarity at small t 3 Apparently, it has not, been 

appreciated before that the problem is relevant to gravitation, and that it is 

sensitive seemingly to the number of flat dimensions. As an illustration of the 

issue, the four-dilaton scattering amplitude of the closed superstring SST II in 

ten dimensions is examined. It is found that the expected violation of unitarity 

occurs at sufficiently large s. Note that the absence or decoupling of negative 

norm states does not imply unitarity at high energies. Evidently, an explicit 

demonstration of the unitarity of (closed-) string theories is needed. 

2. Partial-Wave Unitarity and Graviton Exchange 

Consider the scattering of four massless identical scalars in flat D-dimensional 

space-time. The two incoming (outgoing) momenta are labeled by p1 and p2 (p3 

and ~4). With pl + pa = p3 + p4, define s = 2~1 . pz, t = -2~1 . p4, and 

u = --s - t = -2~1. ~3. The four-point elastic amplitude is Tcl(s, t). Work in the 

center of mass frame. The kinematics of s-channel scattering are simply described 

by s > 0 and one scattering, angle, 0, in terms of which t = --s sin2(0/2). As 

illustrated in fig.1 costi = I. I. The amplitude typically can be expanded in an 

appropriate set of orthogonal polynomials, 

T&J, t) = AD P-n’2 g +Y(1)c&+444 

where v = (D - 3)/2, C’/‘(z) is the Gegenbauer polynomial of order v and degree 

I, and 

AD = 2 r(; - 1) (l&4:-’ 
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is a constant included for later convenience. The Gegenbauer polynomials satisfy4 

1 

J dz(l - 2)~-2cy(z)c;(z) = NF&, = 2;,;;;yr;(2y) &,, v 
(3) 

-1 

and are chosen for the expansion because the phase-space factor for 0 in D 

dimensions is sinDe38 df3. 

The unitarity condition on the partial wave al(s) derives from the unitarity 

of the S-matrix’ Set S = 1 + iT, and 

(jl7 Ikj = (il T Ik) (2n)DbD(Pj - 14. 

Then, 

VI T Ii) - (4 T If)’ = ix (II T I4 (iI T 14’ (2dDJD(Pn - Pi). (5) 
n 

Note that a conventional S-matrix should exist in higher dimensions even when 

massless particles are present because of the phase-space suppression of infrared 

divergences. 

To translate eqn.(5) into a statement on the partial waves requires several 

manipulations. Specializing to the case where Ii) and If) describe elastic scat- 

tering specified by s and 0, 

(fl T Ii) - (iI T If)’ = 2i Im T,l(S, t). (6) 

Furthermore, the sum over intermediate states can be divided in a helpful way. 

Given a particular intermediate state, there is a set of states related to it just 
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by an overall rotation of the given intermediate state relative to ;. Then any 

member of the set is distinguished by a direction A, or equivalently by a rotation 

from 7, R(fi,). 

c (fl T I$ (iI T Ini’ JD(Pn - Pi) 
” 

=C’J dk (fl T In; %) (;I T 112; fL)’ JD(pn - pi) 
n 

(7) 

where the primed sum runs only over intermediate states which are not related 

by an overall rotation. A partial-wave expansion can be made for each of the 

matrix elements, e.g. 

(il T 172; 0,) = AD s2-D~2 5 j+C/(l)C/(cosBi.)“l(s, (n)‘), (8) 
I=0 

where co&i, = a. G , and {n}’ are invariants independent of Bi, which com- 

plete the specification of the intermediate state. An analogous formula holds for 

(fl T 1% a”). 

The unitarity equation becomes 

cose)rm al(s) = (2m)DX~ 82-D/z C’ cSD(p, -pi) 

l$o$?f’(l)&Cif(l) al(s, in)‘)a;l(S,(n)‘) J dn,C;(casef.)C;:(co.ei.). 
(9) 

(The suppression of singularities at cos(er, or BiR) = =kl by the integration mea- 

sure justifies, somewhat naively, the interchange of integration and summation 

for gravitation when D 2 6.) Note that cosBf, = costi cosBin + sin0 sinOin cosdfn 
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as indicated in fig.2. Using the addition formula for Gegenbauer polynomials4 

P(u)C~(cosBfn) = r(2v - 1) 5 4ml?(I - m + l)P(v + m)(2v + 2m - 1) 
m=O 

[r(l + 2V + m)]-‘(sin0 Si~Oin)mC~_+mm(cOSO)C;/_+mm(cOS~in)C~~~(cos~fn) , 

and the property4 

* 

/ d4 si&-‘q$ Cf2(cosq5) = 2-‘“+I* r(2y) bmo, 
0 

r+ + +) 

the angular integral is 

J d~,C~(cosO,,)C;:(cosOi,) = (4s)" 
r(l +i)r(~) 

r(l+2~) 
N~c~(cose) &o. 

After using the identity4 

r(tf2v) 
cy(1) = r(l+ i)r(2v) 1 

and identifying terms proportional to CF(cos6’) in eqn.(9), one finds 

Im al(s) = 8(2?r) 2D-2(;)2-D/* C' P(p, -pi) IU[(S,{?z}')12. 
n 

(10) 

01) 

PI 

(13) 

(14) 

The right side of eqn.(l4) is a sum of positive terms. The restriction of the 

sum to the elastic contribution yields the basic partial -waveunitarity conditions, 

Im al(s) 2 Iar(s)l”. (15) 

It is straightforward to check that when equality holds for all I, D~,+J = gelastic. 
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As an immediate corollary for any 1, (Im a, - i)” + (Re ~1)~ 5 i or 

IUl(~)I 51 

Convenient forms for al(s) are 

a,(s) = s5-2 
* 

AD cr(l) J 
d0 sirP3B c:(cose)Tel(s,t) , 

0 

(16) 

z&3&3 
0 

=‘(‘) = AD c/(l) J dt( - ; - ;)9-2Cy(l + 2t/s&(s,t). (18) 

-8 
Dimensional analysis requires that the factor of s+-~ be present in eqn(l7) be- 

cause a,(s) is dimensionless (if e.g. eqn(l6) is to be sensible) and the dimension 

of a four-point amplitude in D dimensions is [mass]4-D. 

It is now possible to discuss a general feature of the unitarity of theories of 

gravitation in higher dimensions. Given that the graviton is spin-2 and massless, 

the tree approximation to r,l(s,t) is expected to behave as s2/t as s -+ co for 

t tked near 0 (due to one graviton exchange in the t-channel). This behavior 

typically holds over an interval from t = 0 to a lower limit, denoted by -e(s), 

which is not strongly dependent on s. Then, from eqn.(lS), in tree-level about 

flat space-time 

0 

4s) - s J dt(-t)f-3 + . . . . PI 

-(a) 

In particular, strings are essentially Reggeized even at tree-level. The graviton 

Regge trajectory is dominant at tree-level for closed strings. As long as the 

graviton Regge trajectory is differentiable at t = 0, E(S) is proportional to I& 

and the exhibited power behavior will be modified only by logarithms. 
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Ifthe original expansion, eqn.(l), is valid, then the integral overt in eqn.(l9) is 

convergent and partial-wave unitarity embodied in eqn.(l6) will be violated at 

large s roughly by a power of s. Counting powers, the full amplitude should be 

no more singular than l/t at t = 0, corresponding to massless particle exchange. 

Clearly, the partial-wave expansion fails for D = 4 and below due to infrared 

divergences. The conditions of unitarity must be formulated differently in this 

case. The expansion, eqn.(l), is certainly valid for D > 6 because an elastic 

amplitude no more singular than l/t at small t is square-integrable with respect 

to the appropriate weight function. In fact, the expansion is also valid for D = 6; 

it is D = 5 which is the marginal case. The issue of whether the partial-wave 

expansion and the inequality, eqn.(l6), hold in five-dimensional flat space-time is 

beyond the scope of this letter. In general, then, it is extremely difficult for any 

theory of gravity in six or more dimensions to avoid unitarity violation at large 

s in a four-scalar tree amplitude calculated about flat space-time. 

Tachyon-free string theories provide a good testing ground for the general 

conclusions above since the integral which projects out the Ith partial wave is well- 

defined. As an illustration, the four-dilaton tree amplitude of the type II closed 

superstring will be analyzed in ten-dimensional flat space-time. The amplitude 

can be computed from results in the literature. The four-point tree amplitude 

for massless bosons in the type II superstring is given in ref.7 in terms of the 

polarization tensor spy. The four-dilaton amplitude is obtained by setting s”(k) 

equal to $‘” - (k@P + k”W)/k + !i where q@” is the ten-dimensional flat-space 

metric tensor and ?&‘ = (k”, -k’, if k@ = (k’, c). 

T,,(s, t) = g (s4 + t4 + u’) r(-s/s)r(-t/8)r(-u/s) 

r(i + s/s)r(l + t/S)r(l + u/S) (20) 



The coupling constant is K., and a:loaed has been set equal to l/4, half the open 

string value. Using familiar properties of the gamma function, eqn.(20) becomes 

G(s,t) = $ [s4+t4+(S+t)4] 
sin(rh) sin[?r(~ + $)I 

?r sin(?rs/S) { 
q-%)r(; + $) j2 

I?(l+s/S) * 

(21) 

The tree amplitude has poles at s = SN, where N is any nonnegative integer. 

This reflects the existence of massless and massive states coupling as s-channel 

resonances of zero width. The presence of zero-width poles at large s is inconsis- 

tent with Regge behavior and, indeed, unitarity. As in field theory, it is expected 

that loop corrections will give the massive states widths effectively. The widths 

should eliminate this source of unitarity violation as well as yield good Regge 

behavior. Actually, the amplitude already exhibits Regge behavior along the 

ray s = d(1 + ;e), where g is real’ . The limiting procedure, which is adopted 

below, defined by taking d to be large and then e --f O+ gives the replacement 

ezp(-int/S) for sin(?r(s + t)/S]/sin(?rs/S) in eqn.(21). The resulting amplitude 

has Regge behavior with a specific signature factor. 

T,I(S, t) -+ 2: sin(xt/8)e++T2(-t/8) (i)2+tj4 (22) 

It should be remarked that this subtlety has no real bearing on the final result 

for al(s) at large s. 

The expression, eqn.(lS), is a convenient form with which to begin the partial- 

wave analysis. Change variables to y = -it; use the symmetry4 C/(z) = 

(-)‘C/(-z) and the crossing symmetry of the amplitude to write 

n2 1 + (-)’ S6 
8116 

4s) = --z qql) y 2s 
J 

dy y sin(ay)e’“Y I”(1 + y) 
r2(: - Y) 

0 
vi) 

(l- ;Yy[l+ ($)2Y4+ (l- ~Y)']CIy(l - YY,. 

(23) 
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The amplitude has been modified as discussed above after crossing has been used 

because Regge behavior should be consistent with crossing. 

The leading behavior in s of the integral can be found readily. The g-a 

function has the representation for z > O6 

q5) = 6 [I + T(Z)]e(Z-+)~~ = --z (24) 

where 

(25) 

The inequality ]w(z)] 5 & holds. Throughout the region of integration the two 

gamma functions I?(: - y) and I’(i) can be replaced by their asymptotic forms. 

The other gamma function is written conveniently as 

r(l + y) ={I + $$(I + Y) - ,(i)]},(~+f)‘n(l+Y)-Y . 

Using eqn’s (23),(24), and (26), for large s 

P3) 

kc2 1 + (-)I s” 29 
d/16 

q(s) = -- 
ho Cl”(l) ?r J 

dy y sin(lry)f,!‘(y)C2v In ‘[l + 0(1/s)] (27) 

0 

where 

fY(y) = ei=y (1--8Y)s{1+$$l+y)-r(l)]}2 s 

[l-t ($)$4 + (1 - iY)4]cy(1 - yy, (28) 

ezP{2[(y + 1/2)ln(y + 1) - (y - s/8&(1 - :Y) + y In 81) . 

The integrand is damped exponentially in the upper end of the integration range, 

corresponding to fixed-angle scattering. Integration by parts, then, in the factor 
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em29 In a gives a good expansion in & when I is not too large. Dropping terms 

exponentially suppressed in s, 

s/16 

I 
dy y sin(?ry)fF(y).sW2Y In a = 

0 

a/l6 
1 

+- 
8 in3s J dy e- ly I" '$1, sin(w)fiY(Y)l . 

0 

(291 

The remaining integral can be bounded by dividing the region of integration 

into two pieces, about say y = 1. In bounding the remainder it is helpful to bear 

in mind inequalities which may be proven from eqn.(25) : 

ek forz>landn=I,2,3. 

The magnitude of the integral over the interval [O,l] is less than K/(In s). The 

integrand in the interval [l,s/16] is easily bounded by a positive function largest 

in magnitude at y = 1 where it is proportional to l/s2; therefore, the magnitude 

of the integral over this interval is less than k/s. The positive constants k,, K, 

and 2 need not be specified. 

The limiting behavior for al(s) at large s when I is not too large follows upon 

combining eqn.‘s (27),(28), and (29). 

al (4 + -K2 -L 11 + (-)‘I j& 11 + +)I 
3x4 

One power of s divided by ln3s is the form argued for previously on general 

grounds. The leading correction dependent on I comes from a further integration 

by parts of the remainder in eqn.(29). It is of order &s,” : , or approximately 
+d 
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suppressed by & relative to the leading term in eqn.(31). For 1 2 (s In s); 

eqn(31) is no longer accurate. 

Although unitarity in its most stringent form, eqn.(l6), is violated at large s 

by the lowest order result, perturbative unitarity undoubtedly holds. Using eqn.‘s 

(15) and (31), perturbative unitarity implies that the imaginary part of al(s) at 

one-loop should grow as s2 (or faster). The implied growth of s2 in Im q(s) at 

one-loop (at least from the elastic contribution) due to two-graviton exchange 

in the t channel is consistent with the one-loop amplitude behaving roughly as 

s3 for t fixed near 0. This is precisely the behavior which should arise from the 

two-graviton Regge cut3 ” . In the language of Regge theory, the graviton is 

supercritical; the expected behavior for large s of the (n - 1)-loop amplitude 

(effectively with n-graviton exchange in the t channel) is roughly s”+r when t is 

fixed near 0. In fact, the original motivation for this work was the belief” that 

unitarity would be violated if an amplitude grows so rapidly in the Regge limit. 

3. Conclusions 

Although a detailed calculation has been performed only for one closed-string 

theory, a general argument has been presented that the four-point tree ampli- 

tudes of any known closed-string theory formulated about flat space-time of di- 

mension six or more will violate unitarity at sufficiently large s. It is then safe 

to conclude that the string perturbation expansion about the flat space-time of 

critical dimension is strongly coupled at high energies. The troublesome domain 

of interactions, the Regge region, is not short-distance dominated so that com- 

pactification can complicate the interpretation of the result. The result suggests 

that any examination of quantum gravitational effects in string theories (e.g. 
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high-temperature properties) should be carefully studied to check whether the 

calculations presently possible are subject to large higher-order corrections. 

In any case, the unitarization of string perturbation theory at high energies 

should be understood. Making a comparison to weak-interaction theory, the uni- 

tarity violation in the perturbation expansion by powers of s in string theory is 

not analogous to that in Fermi theory where the fixed-angle scattering behavior is 

bad. String amplitudes fall exponentially at fixed angles; correspondingly,” the 

amplitudes apparently are finite in the ultraviolet. Unitarization in the present 

context probably should be associated with long-distance physics. It is possible 

that unitarity in flat space-time of critical dimension can be restored by an ap- 

propriate summation of the perturbation series. A more interesting though quite 

speculative possibility is that the unitarity conditions are more easily satisfied 

when the number of uncompactified dimensions is less than or perhaps equal to 

five because of infrared divergences. Then the compactification of at least five 

spatial dimensions in a string theory with critical dimension ten might be part 

of the unitarization of the theory. Further work should elucidate the issue. 
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FIGURE CAPTIONS 

1. Kinematics of elastic scattering. 

2. Illustration of angles specifying 6. 
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Fig, 2 
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